skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lauenburg, Leander"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. 3D instance segmentation for unlabeled imaging modalities is a challenging but essential task as collecting expert annotation can be expensive and time-consuming. Existing works segment a new modality by either deploying pre-trained models optimized on diverse training data or sequentially conducting image translation and segmentation with two relatively independent networks. In this work, we propose a novel Cyclic Segmentation Generative Adversarial Network (CySGAN) that conducts image translation and instance segmentation simultaneously using a unified network with weight sharing. Since the image translation layer can be removed at inference time, our proposed model does not introduce additional computational cost upon a standard segmentation model. For optimizing CySGAN, besides the CycleGAN losses for image translation and supervised losses for the annotated source domain, we also utilize self-supervised and segmentation-based adversarial objectives to enhance the model performance by leveraging unlabeled target domain images. We benchmark our approach on the task of 3D neuronal nuclei segmentation with annotated electron microscopy (EM) images and unlabeled expansion microscopy (ExM) data. The proposed CySGAN outperforms pre-trained generalist models, feature-level domain adaptation models, and the baselines that conduct image translation and segmentation sequentially. Our implementation and the newly collected, densely annotated ExM zebrafish brain nuclei dataset, named NucExM, are publicly available at https://connectomics-bazaar.github.io/proj/CySGAN/index.html. 
    more » « less